Course Number and Name

BMA701 & OPERATIONS RESEARCH FOR ENGINEERS

Credits and Contact Hours

4 & 60

Course Coordinator's Name

Dr.Ramya

Text Books and References

Text Books:

1. Kanti Swarup, Gupta, P.K and Manmohan, "Operations Research", Sultan Chand & Sons 1997

References:

- 1 Handy A. Taha, "Operations Research", 7thEdn. Prentice Hall of India. 2007.
- 2 Gupta and Hira DS "Operations Research", S. Chand & Co, New Delhi, 2006
- 3. http://www.nptel.ac.in/syllabus/111107064/

Course Description

To impart knowledge about various tools in Operations Research to apply and solve real life problems in Engineering.

Prerequisites	Co-requisites								
Numerical Methods	Nil								
required, elective, or selected elective (as per Table 5-1)									
Required									

Course Outcomes (COs)

CO1: Apply linear programming model and assignment model to domain specific situations. CO2: Analyze the various methods under transportation model and apply the model for testing the closeness of their results to optimal results.

CO3: Apply the concepts of PERT and CPM for decision making and optimally managing projects

CO4: Analyze the various replacement and sequencing models and apply them for arriving at optimal decisions.

CO5: Analyze the inventory and queuing theories and apply them in domain specific situations.

	Student Outcomes (SOs) from Criterion 3 covered by this Course												
	COs/SOs	а	b	c	d	e	f	g	h	i	j	k	1
	CO1	Η											М
	CO2	L		М		L		М		Μ	Н		
	CO3					Н			Н				L
	CO4		Н	Н					Н	L	Н		
	CO5	М				Н				M			Н
List of Topics Covered													

UNIT - ILINEAR PROGRAMMING

Introduction to phases of Operations Research - Linear programming - formulation of the problem - graphical method - simplex method - two phase method - Assignment problems -Transportation models - Vogel's approximation method - Modi method - unbalanced transportation problem – degeneracy in transportation models.

UNIT – II **RESOURCE SCHEDULING AND NETWORKS**

Resource scheduling – Sequencing n jobs through 2 machines and 3 machines. Networks – PERT and CPM – Network diagrams – shortest route – minimum spanning tree – probability of achieving completion date - crash time - cost analysis - resource smoothing and resource levelling.

INVENTROY AND REPLACEMENT MODELS UNIT – III

Inventory models- Types of Inventory and variables in the Inventory problem - deterministic models- Replacement models - Replacement of items that deteriorate with time - equipment that fails completely and their analysis - factors for evaluation of proposals of capital expenditures and comparison and alternatives - present value average investment - rate of return pay off period – individual and group replacement policy.

UNIT – IV **OUEUEING MODELS**

Queuing theory – queuing system and structure – Kendalls's notation– Poisson arrival and exponential service time - characteristic of queuing models - single channel and multiple models - simulation.

UNIT-V **DECISION MODELS**

Game theory -Saddle point-Maximin-Minimax principle-Two person zero sum games (mixed Strategies)-Graphical method for 2×n or m×2 games-Dominance Property-Oddment method.

12

12

12

12

12